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A B S T R A C T   

Studying the spatial and temporal water distribution in the Lake Baikal Basin, which hosts the freshwater lake 
with the most water storage in the world, is essential to understand the water resources and environment of the 
basin and its impact and influence in terms of climate change and disaster prevention and mitigation. The basin 
spans two countries, Russia and Mongolia, which, along with its vastness, makes it challenging to accurately 
automate the acquisition of large-scale and long-term series data. The Google Earth Engine (GEE) is capable of 
processing large amounts of remote sensing imagery but does not support the computation and application of 
deep learning models. This study uses a combination of local deep learning training and GEE cloud-based big 
data intelligent computing to empower GEE with deep learning computing power, enabling it to rapidly auto
mate the deployment of deep learning models. Visible light, near infrared (NIR), modified normalized difference 
water index (MNDWI), short-wave infrared 1 (SWIR1), linear enhancement band (LEB), and digital elevation 
model (DEM), which are more sensitive to water bodies, were selected as input features, along with the opti
mized input features of the existing pixel-based convolutional neural network (CNN) model. This method cor
rects the initial water labels from the Landsat quality assessment bands to reduce the time cost of manually 
drawing the labels and improving the classification accuracy of the water bodies. On average, only 1–2 h are 
required to generate the results for each water body product for each period in Lake Baikal Basin. The extraction 
of water bodies from the Lake Baikal Basin was achieved for nine yearly periods between 2013 and 2021. The 
validation accuracy was 92.9 %, 92.7 %, and 92.4 % for the three years 2013, 2017 and 2021, respectively. The 
results showed that the mean area of water bodies in the basin was 37,500 km2 and that the area of water bodies 
in the basin fluctuated without significant change from 2013 to 2021. This study provides methodological 
support for the continuous monitoring and assessment of water body dynamics at more catchment scales and 
other large scenarios.   

1. Introduction 

Lake Baikal in Northeast Asia is the deepest and most abundant 
freshwater lake globally, with enough water to sustain five billion 
people for half of a century. It was selected as a UNESCO World Natural 
Heritage Site in 1996 (Zheng, 2002). As early as the last century, 

scientists have been studying Lake Baikal in the fields of climate change 
(Bolgrien et al., 1995, Mamaev, 1987), geology (Zonenshain and 
Savostin, 1981, Soloviev et al., 1989), and water environment (Bezrukov 
et al., 1990, Oshchepkov and Shlyakhova, 1987), etc. The United Na
tions Sustainable Development Goals 6 (SDG 6) refers to the provision 
and sustainable management of water and sanitation for all, with sub- 
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goal 6.6 discussing the protection and restoration of water-related eco
systems by 2020, including mountains, forests, wetlands, rivers, un
derground aquifers, and lakes. Understanding the spatiotemporal 
variability of surface water bodies in the Lake Baikal Basin is of great 
scientific importance for sustainable water resources and environmental 
development in Northeast Asia and the surrounding regions. The 
development of earth-orbiting satellite technology and observations has 
made the annual monitoring and assessment of water bodies on a large 
scale possible. However, the vast area of Lake Baikal and the fact that it 
straddles two countries, Russia and Mongolia, makes obtaining infor
mation on its dynamic water bodies difficult, as they are influenced by 
different spatiotemporal conditions, scenarios, and feature types. This 
also makes the automated extraction of large-scale, long-time series 
water bodies at the basin scale very challenging. 

In 1996, McFeeters proposed the normalized difference water index 
(NDWI), which uses the green and near infrared (NIR) bands of remote 
sensing imagery to normalize the water index, to suppress soil and 
vegetation features for water body characterization and surface water 
areas estimation (McFEETERS and S., 1996). Xu constructed a new index 
suitable for extracting water information in built-up areas, the modified 
normalized difference water index (MNDWI), by replacing the NIR band 
in the NDWI index with short-wave infrared (SWIR) (Xu, 2006). Feyisa 
et al. constructed an automated water extraction index (AWEI) to 
improve the classification accuracy of commonly misclassified shaded 
and dark surface features, with better overall accuracy than MNDWI and 
maximum likelihood classification methods (Glf et al., 2014). However, 
these indexes for classifying water suffer from the difficulty of deter
mining thresholds for different scenarios; specifically, single thresholds 
or single indices often make it difficult to achieve more accurate water 
classification results in fine rivers and shaded mountain areas. 

Although many global landcover products have been developed 

(Gong et al., 2013, Gong et al., 2019, Zhang et al., 2020), an in-depth 
discussion on water misclassification is lacking. Studies dedicated to 
the extraction of water bodies have mostly been focused on the local 
scale in small towns, mountains, and the like. For example, Yang et al. 
extracted water bodies in urban areas of Beijing and Yantai city from 
Sentinel imagery using image sharpening NDWI (Xiucheng et al., 2017), 
and Wang Fan et al. carried out an improved water extraction technique 
in the predominantly mountainous Yibin region (Wang, 2021). These 
studies mainly address the extraction of water bodies in specific envi
ronments with clouds, cloud shadows, and building shadow coverage. 
Even as we enter the era of remote sensing artificial intelligence (AI) and 
a plethora of algorithms continue to emerge (Long et al., 2015, Badri
narayanan et al., 2017, Ronneberger et al., 2015), water segmentation 
methods remain dominated by small-scale, regional studies due to over- 
reliance on labeled samples (Li et al., 2019, Weng et al., 2020, Li et al., 
2021a). Therefore, the main problems faced by multi-feature, multi- 
temporal and multi-scene water extraction are the difficulty of sample 
annotation and the difficulty of deploying a large-range and long-term 
deep learning model. 

Google Earth Engine (GEE) is a remote sensing cloud computing 
platform that provides significant image data while allowing for image 
processing, statistics, and analysis. Its advantage is that it allows fast and 
efficient research and mapping of large areas. Deep learning from 
remote sensing imagery has become a popular research topic. However, 
the GEE platform struggles to support deep learning computation in the 
cloud, making it difficult to deploy substantial cloud-based work. 

To address these issues, this study collaboratively invokes the local 
deep learning environment and the GEE remote sensing data and 
computing platform, uses local deep learning training, and gives the 
trained models to the GEE platform for deep learning computing power, 
so that GEE can rapidly automate the deployment of deep learning 

Fig. 1. Study area.  

K. Li et al.                                                                                                                                                                                                                                        



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102928

3

models. This study produced a set of machine-learning samples for water 
classification in the Baikal Basin, a set of surface water products for 
2013–2021, a set of pixel-based CNN-based water extraction models, 
and a set of deep learning model weight resolution empowerment tools. 

2. Study area and materials 

2.1. Study area overview 

The northern region of Lake Baikal Basin is in Russia, and the 
southern region is in Mongolia, with each country accounting for 
approximately half of the 570,000 km2 total basin area (see Fig. 1). Lake 
Baikal is the oldest, deepest (1,637 m), and largest freshwater lake in the 
world, storing approximately 20 % of the global unfrozen freshwater 
while hosting more than 1,500 endemic species. The study area has a 
low inland elevation and a high external elevation, especially in the 
southwest. As a low-altitude area throughout the region, Lake Baikal is 
fed by the Selenge River in Mongolia and a total of 336 other rivers of all 
sizes and flows, including the Angara River, a tributary of the Yenisei 
River. 

2.2. Materials 

The primary data sources for this study are listed in Table 1. The data 
were selected from Landsat 8 Operational Land Imager (OLI) imagery 
and NASA’s digital elevation model (DEM) data, both at a resolution of 
30 m. The B1–B7 bands and the DEM data were chosen to build water- 
sensitive features as input features for the water segmentation model. 
Min and Max in the Table means the minimum and maximum value of 
the band. The quality assessment (QA) band (USGS) was used for cloud 
removal and water label construction. Overall, we synthesized 65 im
ages in the research area in one year and 585 images in nine years. 

3. Methodology 

Based on the GEE cloud computing platform and local deep learning 
computing environment, this study developed a set of water extraction 
techniques for remote sensing images that were suitable for combining 
big data acquisition and AI computing. The technical route of this pro
cess is shown in Fig. 2, which is divided into three major parts: high- 
quality remote sensing data acquisition, deep learning model construc
tion and noise correction, and deep learning model online deployment. 
We aimed to combine local deep learning training with online cloud 
computing and rapidly automate the acquisition of training model 
weights and implement large-scale batch deployment in GEE. Session 1 
uses the GEE platform to select data and provide the necessary Landsat 
images, initial labels, and DEM data for Session 2, which then performs 
feature selection on the images, noise correction on the initial labels, and 
combines the feature bands with the water labels to train the pixel-based 
CNN model. Session 3 is the parsing of the above water segmentation 
model and the deployment of the model via the gee-Python interface to 
enable model transcription and allow the model parameters to be 
deployed to the cloud for quick large-scale water extraction. 

Table 1 
Raw data information.  

Source Band Min Max Resolution Wavelength 

Landsat 8 B1 1 65,455 30 m 0.435–0.451 μm 
B2 1 65,455 30 m 0.452–0.512 μm 
B3 1 65,455 30 m 0.533–0.590 μm 
B4 1 65,455 30 m 0.636–0.673 μm 
B5 1 65,455 30 m 0.851–0.879 μm 
B6 1 65,455 30 m 1.566–1.651 μm 
B7 1 65,455 30 m 2.107–2.294 μm 
QA 0 65,535 30 m / 

NASADEM elevation − 512 8,768 30 m /  

Fig. 2. Technical route.  
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3.1. Remote sensing data acquisition 

In the high-quality image data acquisition session, the QA bands for 
Landsat 8 imagery were primarily evaluated on a per-bit basis. The QA 
bands are the individual pixel quality bands assessed by NASA through 
the FMASK (Function of MASK) algorithm (Qiu et al., 2019), first 
applied to Landsat 8 satellite imagery in 2014 and later expanded to 
Landsat 5 and 7 satellites. The meaning of the binary bits of the QA band 
of the Landsat 8 Collection 2 Level 2 image is shown in Table 2, from 
which the QA band covers information such as clouds, snow, cloud 
shadows, and water. 

The pixels recorded in bits 1–4 of the Landsat 8 QA band are cloud- 
covered, often losing much of their ground information. Bitwise oper
ations masked out the cloud and cloud shadow-covered areas of the 
same area image, and the masked image was superimposed to obtain a 
cloud-free image of the area, reducing the interference of clouds and 
cloud shadows in the water extraction process. As shown in Fig. 3, the 
image visualization effect and data availability improved after the cloud 
removal and stacking processes. The 7th bit in the QA band is also 
indicated in Table 2 as water, allowing the extraction of water infor
mation in that band by bit, which provides the initial label for water 
label construction. 

3.2. Feature bands construction 

The effectiveness of deep learning models is often determined by the 

input training datasets, and thus the choice of remote sensing image 
features governs the merit of image classification. Training water- 
sensitive indexes and bands improve the accuracy of water classifica
tion effectively. Therefore, the more water-sensitive bands, blue, green, 
red, NIR, MNDWI, short-wave infrared 1 (SWIR1), linear enhancement 
band (LEB), and DEM were chosen for the water segmentation process. 
The involvement of DEM can better remove the misclassification of 
water caused by mountain shadows. LEB is obtained by performing a 
linearly enhanced convolution operation on the MNDWI index. Fig. 4 
shows the four convolutional kernels of the linear enhancement band, 
which linearly enhances the MNDWI data in the vertical, horizontal, and 
left–right 45-degree directions. After convolution, the maximum value 
of each pixel is calculated to obtain the LEB in the eight neighborhoods 
around that pixel. Fig. 5 shows a comparison between MNDWI and LEB, 
where the first column is the false color synthesis images, the second 
column is the MNDWI index images, and the third column are LEBs. The 
LEBs enhance the features of linear features and suppresses the expres
sion of homogeneous features. 

3.3. Deep learning model building and label noise correction 

The pixel-based CNN model proposed by Li et al. (Li et al., 2021b) 
was used in this study. Visible light, NIR, MNDWI, SWIR1, LEB, and DEM 
were chosen as the input features of the model to enhance the separa
bility of water and improve classification accuracy. The pixel-based CNN 
model is a water extraction model that considers the pixel texture fea
tures and spectral feature information. The model was trained 

Table 2 
QA band information.  

Bits Meanings Bits Meanings 

Bit 0 Fill Bits 10–11 Cloud Shadow 
Bit 1 Dilated Cloud 0 None 
Bit 2 Cirrus (high confidence) 1 Low 
Bit 3 Cloud 2 Medium 
Bit 4 Cloud Shadow 3 High 
Bit 5 Snow Bits 12–13 Snow/Ice 
Bit 6 Cloud or Dilated Cloud 0 None 
0 set 1 Low 
1 not set 2 Medium 
Bit 7 Water 3 High 
Bits 8–9 Cloud Confidence Bits 14–15 Cirrus 
0 None 0 None 
1 Low 1 Low 
2 Medium 2 Medium 
3 High 3 High  

Fig. 3. Basic de-clouding process.  

Fig. 4. Kernels of linear enhancement.  
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iteratively by traversing the entire image. The 7 × 7 neighborhood of the 
feature band pixel was first taken as the input. After two 3 × 3 convo
lutions, it was spliced with a 3 × 3 region in the middle of the input 
features. Another convolution and splicing were performed, and, finally, 

a 1 × 1 convolution and softmax function were used to determine the 
attribution probability for each category of the central pixel. The cross- 
entropy loss was calculated by combining the attribution probability 
with the labeled pixel and was reduced by iterative optimization of the 

Fig. 5. Linear enhancement.  

Fig. 6. Stacked image after removal of clouds.  
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parameters through gradient descent. 
Once the model was constructed, it was applied for tag noise 

correction. Water information in the QA band is implemented by the 
FMASK algorithm using local dynamic thresholding, which suffers from 
poor water body continuity and is affected by clouds and cloud shadows. 
Therefore, noise deduction is required for the QA band. In this study, a 
normal distribution was fitted to the characteristic wavebands under the 
assumption that the reflectance distribution of the local area water body 
is normal. The pixel-based CNN model was used to train the initial labels 
30 times, making the model more sensitive to the water of the initial 
labels. If the probability of a pixel being water is higher than 95 %, the 
pixel will be classified as water. The mean (μ) and variance (σ) of the 
characteristic bands were then calculated for these determined water 
labels. The remaining images in the region to be determined were 
considered to be water bodies if they fall within the interval (μ-3σ, μ +
3σ), and vice versa. This cycle was repeated three times. 

The noise-corrected water labels and feature images were obtained 
using this method. After initializing the pixel-based CNN model and 
training the corrected water labels, a water segmentation model for the 
Lake Baikal Basin was obtained. 

3.4. Online deployment of models 

The water extraction model for the Lake Baikal Basin was obtained 
using the above method, but the application of the model to a large 
range of remote sensing images is also a major challenge. The traditional 
method requires manually downloading the images and then applying 
the model to each. When faced with large-scale and long-time series 
applications, the problems of difficult image acquisition, low computer 
performance, and slow image mosaic are evident. This study automates 
the parsing of the trained model, assigns the local model architecture 
and parameter weights to the GEE, and integrates the corresponding 
computational module of the GEE to achieve online deployment of the 
model. 

4. Results 

4.1. Remote sensing image data and initial labels acquisition 

This study used a deep learning model to train remote sensing images 
of the Lake Baikal Basin and achieve the water extraction results; 
therefore, image data and labels were needed as the basis for model 
training. One year of full-coverage images of Lake Baikal required 65 

scenes of OLI images, with paths from 128 to 138 and rows spanning 
from 20 to 28. 

Fig. 6 shows the results of image stacking across the study area. The 
main month of restriction was the northern growing season (June to 
August), and the data were averaged by image element after filtering. As 
shown in Fig. 6, controlling the growing season effectively reduces 
interference at the seams. In particular, the seam and boundary infor
mation can have a significant impact on the classification of water 
bodies during convolution operations. The data are mean or median 
processed by image element location to mosaic the 65 images into one 
image. Relying on the cloud computing power of the GEE cloud 
computing platform makes it possible to input a single image of a large 
area of the Lake Baikal Basin. The data prediction process reduces the 
redundant operations of cyclic iterations and removes the duplication of 
calculations in areas where different images overlap, thereby increasing 
the efficiency of the product output. 

The input training images are superimposed synthetic de-clouded 
images for the 2020 growing season of paths 131 and 135. Fig. 6 
shows the geospatial locations of columns 131 and 135, which are in the 
main area of the Lake Baikal Basin and cover part of Lake Baikal and the 
small tributaries of the Selenge River. These images were north–south 
oriented and covered a wide multi-surface area, which helped the model 
learn information in different scenarios during the training process, 
including large lakes, small rivers, and other special surface properties. 
Ultimately, the model learned information from different scenarios 
during training, including large lakes, small rivers, and other surface- 
specific attributes. 

For the images within the sample strips, we reprojected the data to 
the EPSG:4326 (WGS84) coordinate system to match the projected co
ordinates of the NASADEM data. QA bands were used to obtain the de- 
clouded and initial label images. Then, a 502 × 502 pixel image set 
containing the seven OLI bands, elevation data, and the corresponding 
initial water label data set were obtained by cropping at 0.135◦. Finally, 
the initial water label dataset was noise-corrected to obtain a standard 
water label library. 

A comparison of labels before and after noise correction is shown in 
Fig. 7. Among them, the first column is the standard false color synthesis 
image of remote sensing image, the second column is the water body 
information extracted from QA band, and the third column is the water 
body label after noise correction. A-C shows the extraction of water 
bodies in mountainous areas, and it can be seen that the QA band tends 
to misclassify mountain shadows as water. This situation is improved 
after noise correction, which can shield the interference caused by 

Fig. 7. Comparison of labels before and after noise correction.  
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mountain shadows during the extraction of water bodies. D-F are the 
labels of fine rivers, and we can see that the QA band is less effective for 
the extraction of fine rivers, and there is the problem of river breakage or 
even omission. After noise correction, the pixels of the underestimated 
water bodies are extracted, and the continuity of the fine water bodies 
was further improved. After that, 369 labels corresponding to each of the 
data image sets were obtained and converted into a pixel-based CNN 
trainable training data volume of 4.7 million. 

4.2. Model training and prediction 

The pixel-based CNN model was initialized and 369 images were 
selected to construct seven input images with blue, green, red, NIR, 
MNDWI, SWIR1, LEB, and DEM features. The format was transformed 
with the 369 labels to construct 4.7 million deep learning training 
samples that were 7 × 7 × 8 (all bands are 8) for the input and 1 × 1 × 2 
(one-hot encoding of the labeled data) for the output. Of these, 2.1 
million were water samples and 2.6 million were non-water samples, 
with a balanced sample size of 1:1.2. This loop was iterated 10 times. 
Fig. 8 shows the training iteration curve, where (a) shows the accuracy 
and loss of each image in 10 iterations and (b) shows the F1 score of the 
model for 10 iterations. The accuracy steadily improved while the loss 
gradually decreased, with the 10th training accuracy exceeding 98.66 
%, indicating that the above seven features helped the model to train 
and extract water bodies, and are better features for water segmentation. 
F1 score in Fig. 8 (b) is a statistical measure of the accuracy of a 
dichotomous model, which takes into account both the precision and 
recall of the classification model, and a higher F1 score indicates a 
higher quality model. By analyzing the iteration curves, it was found 
that accuracy and loss did not change significantly after the second 

iteration, while F1 score was the highest. Therefore, the model obtained 
from the second training iteration was chosen as the classification model 
for the extraction of water bodies in this study. 

4.3. Water segmentation results and accuracy 

4.3.1. Online deployment of models 
The structure of the pixel-based CNN model is shown in Table 3, with 

input, conv2d, concatenate, and slice corresponding to the ee.Image, ee. 
Kernel.convolve, ee.Image.cat, and ee.Image.select modules in GEE, 
respectively. A model conversion function was built in Python to convert 
CNN-based deep learning architectures to GEE format, and the code has 
been open-sourced in GitHub. 

4.3.2. Results of interannual water extraction in Lake Baikal 
Fig. 9 shows the annual water extraction results from 2013 to 2021, 

the 2021 water segmentation results, and a demonstration of the 
extraction results of some rivers and water bodies. It can be seen that the 
AI and remote sensing big data fusion method can effectively extract 
large-area lakes such as Lake Baikal and Lake Khovsgol. Similarly, the 
fine Selenge River was clearly displayed. 

Figs. 10 and 11 show the interannual distribution of water bodies in 
some tributaries of the Selenge River and the Selenge River delta, 
respectively. The Selenge River, the most important source of water for 
Lake Baikal, flows into Lake Baikal after the Selenge River delta. It can 
be seen from the figure that the curved and fine Selenge River was 
extracted, and the continuity of the extracted rivers is strong. Fine rivers 
in the delta as well as small area lakes were also extracted. 

We counted the area of water bodies within the Lake Baikal basin. It 
was compared with the water level changes. The water level change 

Fig. 8. Training iteration curves.  

Table 3 
Model parameters.  

Layer (type) Output shape Param Connected to GEE module 

input_1 (InputLayer) [(None, 7, 7, 8)] 0  ee.Image 
conv2d (Conv2D) (None, 5, 5, 16) 1,168 input_1[0][0] ee.Kernel.convolve 
conv2d_1 (Conv2D) (None, 3, 3, 32) 4,640 conv2d[0][0] ee.Kernel.convolve 
tf_op_layer_strided_slice (None, 3, 3, 7) 0 input_1[0][0] ee.Image.select 
concatenate (Concatenate) (None, 3, 3, 39) 0 conv2d_1[0][0] ee.Image.cat 

tf_op_layer_strided_slice[0][0] 
conv2d_2 (Conv2D) (None, 1, 1, 64) 23,104 concatenate[0][0] ee.Kernel.convolve 
tf_op_layer_strided_slice_1 (None, 1, 1, 7) 0 input_1[0][0] ee.Image.select 
concatenate_1 (Concatenate) (None, 1, 1, 71) 0 conv2d_2[0][0] ee.Image.cat 

tf_op_layer_strided_slice_1[0][0] 
conv2d_3 (Conv2D) (None, 1, 1, 128) 9,216 concatenate_1[0][0] ee.Kernel.convolve 
conv2d_4 (Conv2D) (None, 1, 1, 2) 258 conv2d_3[0][0] ee.Kernel.convolve 
Total params: 38,514   
Trainable params: 38,514   
Non-trainable params: 0    

K. Li et al.                                                                                                                                                                                                                                        
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information was taken from the annual report of the Ministry of Natural 
Resources and Environment of the Russian Federation on the state of 
Lake Baikal and measures for its protection, which contains information 
on the water level of Lake Baikal from 1980 to 2019. From 2013 to 2021, 
the water area of the Lake Baikal basin varies from 37,201 to 37,993 
km2, with an average value of 37,532 km2 or 6.6 % of the total basin 
area. Overlaying this with the annual report on the state of Lake Baikal 
and protection measures (Fig. 12), it is clear that the water level of Lake 
Baikal decreased between 2013 and 2015 and remained low from 2015 
to 2017, with a sudden increase in water level in 2018 before it dropped 
again in 2019. 

4.3.3. Accuracy evaluation 
The validation points were manually selected to validate the accu

racy of water products extracted from the Pixel-based CNN model, QA 
band, and MNDWI using Otsu thresholds, respectively. Validation points 
were selected on Google Earth Pro for the three years 2013, 2017, and 
2021. A total of 4,798 validation points were selected, including 2,262 
validation points for water bodies, 1,847 validation points for others and 
689 validation points for shadows. The confusion matrix is listed in 
Table 4. The three-year accuracy for 2013, 2017, and 2021, of the AI 
remote sensing big data fusion method was 92.9 %, 92.7 %, and 92.4 %, 
respectively, and the Kappa coefficients were 0.86, 0.85, and 0.85, 
respectively. The accuracy of the QA band and NDWI with Otsu 
thresholds method were lower than that of the noise-corrected deep 
learning method. As can be seen from Table 4, the water body products 
obtained from the Pixel-based CNN model for the above three years are 
able to reduce the interference of shadows in comparison with the water 

body information in the QA band and MNDWI threshold method, and 
the misclassification of water bodies into shadows is improved. It can be 
seen that MNDWI threshold method, compared with other methods, is 
more likely to misclassify shadows as water. Therefore, using the 
threshold method to do water classification needs to overcome the 
problem of difficulty in defining thresholds between water and shadows. 
The averages of Acc, Recall, MIoU, FWR, FWR, Kappa for 3 years were 
counted, and it was found that the Pixel-based CNN method performed 
better under these indicators. In summary, the method in this paper gets 
better performance in water body extraction and shadow pixels 
avoidance. 

Among them, the calculation formula of these indicators are as 
follow: 

po = Acc =
TP + TN

TP + TP + FP + FN
(1)  

Recall =
TP

TP + FN
× 100% (2)  

MIoU =
1

k + 1
∑k

i=0

TP
FN + TP + FP

× 100% (3)  

TWR =
TP

FP + TP
× 100% (4)  

FWR =
FP

FP + TP
× 100% (5)  

Fig. 9. Interannual spatial and temporal variability of water bodies during 2013–2021 in the Lake Baikal Basin.  

K. Li et al.                                                                                                                                                                                                                                        



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102928

9

Kappa =
po − pe

1 − pe
(6)  

pe =
(TP + TN) × (TP + FP) + (FP + FN) × (TN + FN)

N2 (7) 

True Positive (TP) is the number of pixels whose label and prediction 
are both “water.” True Negative (TN) is the pixel whose label and pre
diction are both “ non-water.” False Positive (FP) represents the number 
of pixels with the label ”water“ and predicted as ” non-water,“ and False 
Negative (FN) represents the number of pixels with the label ” non-water 

Fig. 10. Interannual water bodies in the Selenge River tributaries from 2013 to 2021.  

Fig. 11. Interannual water bodies in the Selenge River Delta from 2013 to 2021.  
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Fig. 12. Interannual variations in the basin area and water levels.  

Table 4 
Confusion matrix for water classification.  
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“ and predicted as ”water.“. 

5. Discussion 

This study proposes an automated water segmentation method for AI 
big data fusion, using a pixel-based CNN model as the water segmen
tation model, and constructs a local deep learning environment and a 
model structure parsing procedure, combining the parsed weights and 
each layer of the model’s network in coordination with the method in 
the GEE cloud computing platform. Automated label noise correction 
and rapid deployment of training weights to predict water bodies were 
achieved. Using the Lake Baikal Basin as an example, the surface water 
distribution for 2013–2021 was predicted and extracted at the basin 
scale using sample strips as training data. 

Table 5 provides and compares the first convolution parameters of 
the incoming band weights. Eight bands have similar weight informa
tion. The highest weight is in the LEB at 13.85 % and the lowest weight 
in the green band at 11.61 %. The top three in terms of weight are the 
LEB, MNDWI and NIR. This indicates that these three bands play an 
important role in the water segmentation process in the Lake Baikal 
Basin, confirming the superiority of MNDWI as a water segmentation 
index. 

In summary, deep learning helps to efficiently discover feature in
formation, which facilitates the exploration of ways to construct features 
for water bodies or other information. Knowledge mining is achieved 
through the backward propagation of data-driven models. For example, 
when analyzing the weights, redundant information can be removed 
from the neural network, where the proportion of weights is much 
smaller than other feature bands, or meaningful features can be un
covered in the process of extracting feature information from the neural 
network and exploring the mechanism by which these features operate. 

The deep learning-enabled automated extraction method for water 
bodies in the GEE Lake Baikal Basin data reduced the data acquisition 
difficulties, removed the redundant image screening, downloading, and 
slicing operations, and allowed for the batch acquisition of cloud-free 
images, greatly enhancing the rapid deployment of the model in the 
cloud. Table 6 demonstrates the efficiency of the local deep learning 
approach compared to the deep learning-enabled GEE online cloud 
computing approach. The deep learning-enabled GEE deep learning 
approach in the cloud significantly reduced time and labor costs in 
image data acquisition, data pre-processing, deep learning prediction, 
and image post-processing. It only took approximately 1–2 h to obtain 
the distribution of surface water bodies in the Lake Baikal Basin using 
data from one year. 

Water bodies at the watershed scale can be efficiently obtained using 
this method. However, improvements or in-depth studies can be made in 
the following areas in the future. (1) Optimization of labels. Noise 
correction in QA band can reduce the interference of noise such as 
mountain shadow, however, manual participation in labeling water 
bodies or filtering labels can get higher accuracy water body labels 
currently. (2) Optimization of mosaic. In this study, the image mosaic 
process was restricted in months to June to August each year, and the 
median of cloud-free images was used to obtain images of the growing 
season of the study area for the entire region for 9 years. Restricting the 
month and median processing can alleviate the problem of uneven 
mosaic caused by inconsistent radiation intensity of features at different 
times in large scenarios, but there is still the problem of color difference 
in some cloudy areas. This problem can be solved by using a better de- 
clouding method or a color correction algorithm. (3) A better combi
nation of characteristic bands. The characteristic bands in this paper are 
visible light, NIR, SWIR1, MNDWI, LEB, and DEM. Exploring bands with 
higher sensitivity to water bodies can ease the training difficulty of the 
model. In addition, the combination with synthetic aperture radar im
ages can explore the real-time water extraction under multi-cloud 
coverage. (4) Method application. The method can provide a reference 
method for large scale remote sensing applications, not only in water 
body extraction but also for more land cover features mapping. How
ever, it needs to be tailored for different tasks in terms of models, 
datasets, etc. 

6. Conclusion 

This study proposes an automated water extraction method with AI 
big data fusion and extracts and analyzes interannual surface water in 
Lake Baikal Basin from 2013 to 2021. First of all, it bridges the gap in 
traditional water classification, which is difficult to deploy empowered 
by deep learning on a large scale. By combining local training with real- 
time prediction, deep learning models are automatically deployed on the 
GEE cloud computing platform. It automatically assigns weights from 
the local model to GEE and transforms the neural network layers in the 
pixel-based CNN into GEE modules. Additionally, the efficiency of water 
body product acquisition was greatly improved; the overall accuracy 
reached more than 92 % as well. Secondly, the QA band of the combined 
images removed the interference of clouds and cloud shadows, and ac
curate water labels were quickly obtained using the water information 
from the QA band. The overfitting phenomenon of a single scene was 
reduced by the iterative training of large samples and multiple scenes. 
Thirdly, in-terannual surface water body products were obtained for 

Table 5 
Comparison of different band weights.  

Bands Blue Green Red NIR SWIR1 MNDWI LEB DEM 

Weight  11.34  11.12  11.60  12.31  11.63  12.95  13.27  11.55 
Ratio / %  11.84  11.61  12.11  12.85  12.15  13.52  13.85  12.06  

Table 6 
Efficiency comparison between local computation environment and GEE cloud computing environment.   

Local computation environment Efficiency GEE cloud computing 
environment 

Efficiency 

Image screening and 
acquiring 

Cloud volume filtering, month filtering, 
data download, with cloud area filling 

It takes around 10 days to complete one year of 65 
Cloud-free Imaging and requires around 100 GB of 
local disk 

QA band cloud removing, month 
screening 

Seconds 

Pre-processing Reflectance calculation, image cropping to 
regular size 

1–2 Days Reflectance calculation, free-cloud 
images mosaic 

Seconds 

Deep Learning 
Prediction 

Cropped image prediction 3–4 Days Deep learning weights for one- 
period mosaic image prediction 

1–2 h 

Post-processing Splicing, seamless mosaic 1–2 Days / / 
Total model 

deployment time 
15–18 Days 1–2 h  
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2013–2021. Our results show that the mean area of water bodies in the 
basin is 37,500 km2, representing 6.6 % of the total basin area. The 
water body area of the Lake Baikal Basin has fluctuated over the years 
but has not changed significantly since 2013. 

This study helps enhance the advancement of large-scale water- 
body-centered remote sensing studies. It provides examples of basin 
scenarios for the application of dynamic monitoring of surface water 
bodies globally and in large regions. This depth further enhances the 
applicability of the GEE platform, extending it from the traditional 
machine-learning domain to the deep learning domain. Models and 
methods have been uploaded to GitHub (https://github.com/ 
CaryLee17/water_gee). 
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