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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Gradient boosted tree algorithm is 
adaptable to desertification monitoring. 

• 30-meter resolution desertification map 
of the entire Mongolian plateau was 
firstly retrieved from 1990 to 2020. 

• The year 2010 showed transition to land 
restoration in Mongolian Plateau. 

• Quantifying the drivers of the distribu
tion and evolution of desertification on 
the Mongolian Plateau, respectively. 

• Explaining the heterogeneity of deserti
fication evolution and driving mecha
nisms in Inner Mongolia, China and 
Mongolia.  
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A B S T R A C T   

Desertification poses a severe ecological and environmental challenge in the Mongolian Plateau (MP). It is 
difficult to quantify desertification distribution using unified indicators in the entire MP, because of its complex 
physical geographic conditions and various climatic zones covered. To accurately address this challenge, the 
spatial distribution of desertification at a 30-m resolution from 1990 to 2020 were mapped in this study. The 
desertification potential occurrence zone was identified by using a moisture index on the MP firstly. The feature 
space model and five machine learning models were constructed to make the map based on Google Earth Engine 
and Landsat data. The spatiotemporal distribution of desertification were further analyzed, and the dominant 
drivers of desertification distribution and evolution were identified using Geodetector model. The results indicate 
that the potential occurrence area of desertification accounted for 83.88 % of the total land area. The gradient 
boosted tree model for desertification assessment has the best performance with the highest overall accuracy of 
88.18 %. The year 2010 marked a pivotal transition from land degradation to land restoration in the MP. Be
tween 2010 and 2020, desertified land continued to deteriorate extensively in the southern Mongolia, while 
Inner Mongolia, China, essentially entered a full recovery phase. Precipitation and land use emerged as the 

* Corresponding author at: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources 
Research, Chinese Academy of Sciences, Beijing, 100101, China. 

E-mail address: wangjl@igsnrr.ac.cn (J. Wang).  

Contents lists available at ScienceDirect 

Science of the Total Environment 

journal homepage: www.elsevier.com/locate/scitotenv 

https://doi.org/10.1016/j.scitotenv.2024.173566 
Received 2 January 2024; Received in revised form 25 May 2024; Accepted 25 May 2024   

mailto:wangjl@igsnrr.ac.cn
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2024.173566
https://doi.org/10.1016/j.scitotenv.2024.173566
https://doi.org/10.1016/j.scitotenv.2024.173566
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2024.173566&domain=pdf


Science of the Total Environment 941 (2024) 173566

2

primary drivers of the spatial distribution of desertification on the Mongolian Plateau and Mongolia, with po
tential evapotranspiration and precipitation influencing the distribution of desertification in Inner Mongolia, 
China. Land use change was the primary driver of desertification evolution on the MP and Mongolia. This study 
constructs an indicator system and methodology suitable for desertification monitoring on the MP, addresses the 
lack of refined desertification data over a long time series, and provides scientific reference for decision-making 
support in combating desertification in this region, and other large arid and semi-arid areas in the world.   

1. Introduction 

Desertification is a critical environmental and socioeconomic chal
lenge in arid and semi-arid areas, characterized by the continuous 
decline or loss of biodiversity or land productivity (Xiao et al., 2006; 
Shao et al., 2023). Globally, over 20 % of arable land, 30 % of forests, 
and 10 % of grasslands are undergoing degradation, affecting approxi
mately one-sixth of the population (Christian and Dhinwa, 2018; Linnér 
and Messing, 2012; Berdugo et al., 2017). Desertification increases the 
severity and frequency of sandstorms, food shortages, and poverty, 
posing threats to human health and well-being (Liu et al., 2020; Alher
bawi et al., 2022). Recognizing the urgency, the United Nations General 
Assembly incorporated combating desertification as one of 17 sustain
able development goals (SDGs) in 2015, within the 2030 Agenda for 
Sustainable Development (2030 Agenda) (United Nations, 2015). SDGs 
Target 15.3 explicitly focuses on combat desertification, restoring 
degraded land and soil, and striving to achieve a land degradation- 
neutral world by 2030. The risk of desertification in drylands has 
intensified owing to the escalating impacts of climate change (Huang 
et al., 2019; IPCC, 2019). Thus, it is imperative to scientifically quantify 
the fine spatiotemporal evolution and driving mechanism of desertifi
cation, providing data and theoretical support for policy formulation to 
combat desertification and achieve the goal of Land Degradation 
Neutrality (LDN). 

Desertification monitoring primarily involves field surveys and 
remote sensing (Zhang and Huisingh, 2018; Rivera-Marin et al., 2022). 
While field investigations have the highest accuracy, they are imprac
tical for large-scale desertification monitoring due to the significant 
demands on labor, time, and financial resources (Zhao et al., 2019). 
Compared to traditional ground-based monitoring, the scientific, effi
cient, accurate, and automated features of remote sensing technology 
render it the preferred choice for global and regional desertification 
monitoring over long time series (Zhang et al., 2021). Advancements in 
remote sensing observation technology and cloud computing platforms 
have facilitated the gradual application of high-resolution remote 
sensing images (10–30 m resolution) to analyze spatiotemporal patterns 
and the precise evolution of desertification on a large regional scale 
(Meng et al., 2021; Xu et al., 2023), marking significant progress 
compared to earlier research conducted at a scale of 250–1000 m (Duan 
et al., 2019). Targeting such high-resolution remote sensing images, 
feature space models, and machine learning algorithms has become a 
research hotspot for rapid long-term monitoring of desertification on a 
large regional scale (Fan et al., 2020; Meng et al., 2021; Wei et al., 
2020). However, owing to the complexity of desertification processes, 
the performances of feature space models and machine learning algo
rithms exhibit considerable variability under distinct geographic con
ditions (Wei et al., 2018; Jiang et al., 2023; Feng et al., 2022; Zhao et al., 
2023). Therefore, for precise large-scale desertification information 
extraction, synthesizing the performance of multiple feature space 
models and machine learning algorithms is necessary to enhance the 
accuracy of desertification monitoring (Wang et al., 2023b). 

Desertification is the process of land degradation in arid, semiarid 
and dry sub-humid areas resulting from climate variations and human 
activities (UNCCD, 1994). Climate influences the extent and severity of 
desertification by altering the spatiotemporal distribution of precipita
tion, temperature, and wind (Ding and Hao, 2021). Irrational human 
activities including population explosion, aggressive mining, 

overgrazing, and the expansion of arable land, contribute the destruc
tion of vegetation and soil erosion, directly exacerbating desertification 
(Feng et al., 2015; Bardgett et al., 2021; Zhou et al., 2019). Ecological 
restoration policies, such as the Three Norths Shelter Forest Program 
(TNSFP) and the grazing policy, are recognized as important drivers of 
desertification dynamics, affecting the desertification process by 
affecting land use change (Turner et al., 2023; Liu et al., 2020). Various 
quantitative methods such as correlation analysis, generalized linear 
models, principal component analysis, and random forest models have 
been employed to assess the contribution of individual natural and so
cial factors to desertification distribution (Jiang et al., 2023; Meng et al., 
2021; Wang et al., 2020; Xie et al., 2015). The impact of anthropogenic 
activities and natural factors on desertification can also be quantified by 
assessing changes in indicators such as net primary productivity (Zhao 
et al., 2023; Zhang et al., 2022). However, this method relies on 250- 
and 500-m MODIS datasets with coarse spatial resolution, resulting in 
highly uncertain results for sparsely vegetated areas (Li et al., 2015). 
Concurrently, the contributions of individual climatic and anthropo
genic factors to desertification cannot be captured using this method. In 
contrast, based on high-resolution desertification data, the Geo-detector 
model can quantitatively assess the impact of various factors and further 
explore the interaction mechanisms of climatic and anthropogenic fac
tors on desertification (Qi et al., 2023; Wang et al., 2023c). 

The Mongolian Plateau (MP), one of the most arid zones in the 
northern hemisphere, is highly susceptible to land degradation due to 
climate change and anthropogenic activities. Mongolia is a global 
desertification hotspot, with 76.8 % and 76.9 % of its total territory 
desertified in 2015 and 2020, respectively (Chan et al., 2023; Wei et al., 
2018). Adjacent to Mongolia, Inner Mongolia, China, is one of the re
gions most seriously affected by desertification in China (Zhang and 
Huisingh, 2018). Climate variation, overgrazing and other irrational 
human activities have further exacerbated desertification on the MP. In 
recent years, strong dust storms have swept through Mongolia, causing 
significant human casualties and economic losses, and severely affecting 
most of Northeast Asia (Zhang et al., 2023). Desertification of the MP 
poses a significant challenge to achieving LDN. Additionally, as a 
representative arid steppe zone in the Eurasian continent, desertification 
directly threatens regional ecological security and the well-being of the 
local population. 

However, most current studies on refined desertification monitoring 
in the MP focused on Inner Mongolia (China), Mongolia, or smaller 
localized case studies (Duan et al., 2019; Meng et al., 2021; Xu et al., 
2023; Zhao et al., 2023) and fail to grasp the refined evolution of 
desertification on the entire MP from a global and holistic perspective. 
Additionally, there is a deficiency in long-term time series and highly 
detailed desertification data, hindering a comprehensive and accurate 
assessment of desertification evolution. Low-resolution desertification 
data include numerous mixed pixels, leading to high uncertainty in the 
results (Wang et al., 2023b) and, impeding the precise formulation and 
implementation of desertification control strategies. Finally, research on 
the mechanisms driving desertification across the MP is limited. Previ
ous studies conducted in Mongolia and Inner Mongolia have primarily 
concentrated on a single desertification spatial distribution pattern 
(Meng et al., 2021) or a coarse-grained analysis of desertification evo
lution mechanisms, which have not adequately elucidated the contri
butions of natural and anthropogenic factors to the spatial distribution 
pattern and evolution of desertification, nor have they explored the 
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impact of interactions between factors. 
To address this scientific hurdle, this study aimed to enhance the 

nuanced understanding of the evolutionary characteristics of global 
desertification on the MP by applying big data and artificial intelligence 
technologies. It also sought to quantitatively identify the driving 
mechanisms of the spatial distribution and evolution of desertification at 
different regional scales. This study provides a detailed and reliable data 
base for the delineation of key areas for desertification control on the 
MP, and offers a reference for quantitative analysis of desertification- 
driven mechanisms. 

2. Material and methods 

2.1. Study area 

This study focused on the core area of the Mongolian Plateau 
(87◦43′–126◦04′E, 37◦22′–53◦20′N), encompassing the Inner Mongolia 
Autonomous Region of China and Mongolia. The total area of the study 
region is approximately 2,749,500 km2, comprising 1,183,000 km2 of 
Inner Mongolia and 1,566,500 km2 of Mongolia (Fig. 1). The topography 
exhibits complexity and variation, gradually descending from northwest 
to southeast, with an average elevation of 1580 m. Mountains dominate 
the northwest, large scale hills are prevalent in the center and east, and 
the Gobi Desert extends across the southwest. The MP, situated deep 
inland, experiences a typical temperate continental climate, with low 
precipitation and significant temporal and spatial variations (Zheng 

et al., 2023). The climate distribution pattern transitions from a sub- 
humid arid zone in the north and east to semi-arid, arid, and hyper- 
arid zones in the southwest. The regional ecological environment is 
fragile, and vegetation distribution follows a clear banding pattern, with 
eight types from north to south: coniferous forests, mixed forests, de
ciduous forests, forest grasslands, meadow grasslands, typical grass
lands, desert grasslands, and deserts. Clear disparities in socioeconomic 
development exist between China and Mongolia, with the populations of 
Inner Mongolia, China consistently representing a significant proportion 
of the MP, averaging 90 % over the last 20 years (Chan et al., 2023). 
Animal husbandry constitutes the primary economic foundation for 
Inner Mongolia, China, and Mongolia, whereas mining is the principal 
mode of economic development in Mongolia (Liang et al., 2021). 

2.2. Data sources 

Landsat 5/7/8 imagery served as the primary remote sensing data for 
depicting the 30-m resolution desertification distribution on the MP in 
1990, 1995, 2000, 2005, 2010, 2015, and 2020. Based on the Google 
Earth Engine (GEE), clouds, cloud shadows, and perennial snow were 
removed from each original image using quality assessment bands 
generated by the CFMASK algorithm. The normalized difference vege
tation index (NDVI) maximum synthesis method was used to acquire 
high-quality images of the entire MP, showcasing optimal vegetation- 
growth conditions year round. Simultaneously, the global surface 
water dataset from the Joint Research Center (Pekel et al., 2016) was 

Fig. 1. The study area and the distribution of desertification sample points.  
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utilized to eliminate water bodies, thereby enhancing the accuracy of 
the desertification inversion results. 

Table 1 shows details of the 12 natural and human factors used in this 
study, including data sources, abbreviation, resolution, units, and 
websites. We reclassified the classification system of the Land use/cover 
products (Wang et al., 2022; Xu et al., 2023) into 6 land use types (LU), 
including forest, grassland, cropland, bare land, sandy land, and others. 
Meanwhile, a total of four periods of LU conversion in the MP from 2000 
to 2020 were obtained by using Arcgis. 

2.3. Methods 

In this study, we initially determined the potential range of deserti
fication occurrence on the MP based on precipitation and potential 
evapotranspiration data. Subsequently, all Landsat images of the 
growing season (June–September) were filtered on GEE with cloud 
masking and quality screening, and NDVI maximum synthesis was uti
lized to obtain the images with the best annual vegetation growth con
ditions. These synthesized images were then used to calculate vegetation 
and soil indicators, and which were combined with Landsat's original 
spectral information to map the distribution of desertification using 
machine learning methods. Finally, we analyzed the spatial and tem
poral evolution of desertification on the MP over the last 30 years, and 
further explored the driving mechanisms of desertification at different 
regional scales on the Mongolian Plateau using Geodetector models. The 
specific technical process is shown in Fig. 2. 

2.3.1. Determination of the potential occurrence extent of desertification in 
the MP 

Desertification refers to land degradation caused by various factors, 
including changes in climate variability and anthropogenic activities in 
arid, semi-arid, and dry subhumid areas, characterized by a moisture 
index (MI) ranging from 0.05 to 0.65 (UNCCD, 1994). The MP is 
geographically complex, encompassing several climatic regions. Ac
cording to the climate zoning sub-thresholds established by the United 
Nations Convention to Combat Desertification (UNCCD, 1994), the MP 
was categorized into five climate zones: hyper-arid (MI < 0.05), arid 
(0.05 < MI < 0.2), semi-arid (0.2 < MI < 0.5), sub-humid semi-arid (0.2 
< MI < 0.65), and humid (0.65 < MI). This categorization delineates the 
potential occurrence range of desertification on the MP, where MI is the 
ratio of the PRE to the PET. 

2.3.2. Desertification information extraction methods  

(1) Classification standards for desertification on the MP 

Based on previous studies (Fan et al., 2020; Meng et al., 2021) and a 
field survey of the MP, desertification was categorized into five classes: 
severe, heavy, moderate, light, and potential desertification. With the 
field survey, we obtained information on land cover type, soil moisture, 
soil conductivity, soil grain size, vegetation cover, and the surrounding 
landscape condition of the field sites to comprehensively and accurately 
assess the desertification degree of the field survey sites. Table 2 presents 
landscape photographs and grading criteria for various degrees of 
desertification. Following the established desertification classification 
standards, 922 machine learning sample points for desertification were 
selected using high-resolution Google Earth imagery with the assistance 
of land-cover data on the MP. Combined with 78 field sites, a total of 
1000 desertification sample points were compiled with 70 % allocated 
for model training and 30 % for model validation. The distribution of the 
sampling points is shown in Fig. 1.  

(2) Desertification characterization indicators 

Vegetation and soil conditions currently serve as the primary char
acteristic indicators for monitoring the degree of desertification through 
large-scale remote sensing. Vegetation is highly sensitive to changes in 
topography, geomorphology, soil, hydrological conditions, and climate, 
making it one of the most reliable indicators of desertification degree 
(Guo et al., 2022). The depletion of soil nutrients is the most severe 
consequence of desertification. In this study, five desertification in
dicators were selected: vegetation cover (FVC), NDVI, modified soil- 
adjusted vegetation index (MSAVI), albedo, and topsoil grain size 
index (TGSI). The NDVI is a common parameter used to characterize the 
growth and health of vegetation. In sparsely vegetated areas, the NDVI is 
less effective at characterizing vegetation conditions due to soil back
ground interference. Consequently, the MSAVI was introduced to 
address this limitation (Huete, 1988). MSAVI can effectively mitigate 
the influence of the soil background, as it considers the fundamental soil 
line. FVC is an important index that reflects vegetation cover and can be 
used to evaluate land-use status and ecological environment quality (Li 
et al., 2016). Albedo is a comprehensive representation of soil moisture 
and nutrients. TGSI can be used to characterize the coarseness and 
fineness of soil particles (Xu et al., 2023). The remote sensing inversion 
formulas and bands used for the five vegetation and soil indicators are as 
follows: 

Table 1 
Detailed information on 12 natural and human factors.  

Data Source Abbreviation Units Resolution Websites 

Precipitation TerraClimate dataset (Abatzoglou et al., 2018) PRE mm ~4 km https://climatedataguide.ucar.edu/ 
Monthly maximum 

temperature 
TMMN ◦C 

Monthly minimum 
temperature 

TMMX ◦C 

Soil moisture SM ◦C 
Palmer drought index PDSI / 
Potential 

evapotranspiration 
PET mm 

Vapor pressure deficit VPD kPa 
Wind speed WS m/s 
Digital elevation model Shuttle Radar Topography Mission V3 DEM m 30 m https://www.usgs.gov/ 
Land use/cover the Institute of Geographic Sciences and Natural 

Resources, the Chinese Academy of Sciences 
/ / 30 m China: 

https://data.tpdc.ac.cn/home Mongolia: https://figs 
hare.com/ 

Livestock Provincial statistical yearbooks of China; The 
Mongolian Statistical Office 

LIVEST thous. 
head 

Statistical 
data 

China: 
http://tj.nmg.gov.cn/datashow/pubmgr/publishman 
age.htm?m=queryPubData&procode=0003&cn 
=A017 
Mongolia: http://www.1212.mn/en 

Population POP person  
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Fig. 2. The technical flowchart.  
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NDVI = (Bnir − Bred)/( Bnir +Bred) (1)  

FVC = (NDVI − NDVIsoil)
/(

NDVIveg +NDVIsoil
)

(2)  

MSAVI =
(

2Bnir +1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2Bnir + 1)2
− 8(Bnir − Bred)

√ )/

2 (3)  

TGSI = (Bred − Bblue)
/(

Bred +Bblue +Bgreen
)

(4)  

Albedo = 0.356Bblue +0.13Bred +0.373Bnir +0.085Bswir1 +0.072Bswir2

− 0.0018
(5)  

where Bred, Bblue, Bgreen, Bnir, Bswir1, and Bswir2 are the reflectance of the 
red, blue, green, near-infrared, and shortwave infrared bands, respec
tively. NDVIsoil and NDVIveg are the NDVI value of pure bare soil and 
pure vegetation, respectively.  

(3) Machine learning and feature space models 

Utilizing the GEE platform, we conducted a thorough comparison of 
five machine learning models and a feature space model to map the 
desertification distribution across the Mongolian Plateau. These models 
comprised CART, SVM, RF, GBDT, MMD, and the Albedo-NDVI feature 
space model. Table 3 summarizes the principles of each model. 

2.3.3. Accuracy assessment methods 
The confusion matrices were employed to quantify the accuracy of 

various machine learning and feature space models in extracting 
desertification information. It consisted of four main evaluation in
dicators: the overall accuracy (OA), Kappa coefficient, the producer's 
accuracy (PA), and the user’ s accuracy (UA). OA is the ratio of the sum 

of correctly classified pixels to the total number of pixels. The Kappa 
coefficient is a statistical measure to assess the overall reliability be
tween classification and the multisource reference data product. PA 
refers to the probability that ground-truth reference data for a category 
is correctly categorized. UA represents the probability that the valida
tion point that falls into a category on the classification map is correctly 
classified into that category (Fan et al., 2015). 

OA =
∑n

i=1
Xii

/
N (6)  

Kappa =

N
∑n

i=1
Xii −

∑n

i=1
(Xi+ × X+i)

N2 −
∑n

i=1
(Xi+ × X+i)

(7)  

PAi = Xii/Xi+ (8)  

UAi = Xii/X+i (9)  

where n denotes the category, N represents the total number of 
samples,Xii represents the number of diagonal elements of the confusion 
matrix, Xi+ represents the sum of the columns of the category, and 
X+irepresents the sum of the rows of the category. 

2.3.4. Gravity-center migration model 
The gravity center of desertification represents the point in the 

spatial plane at which torques balance for a specific desertification de
gree in a given year within the study area. The gravity center migration 
model comprehensively analyzes the direction, path, and distance of the 
gravity-center movement over a defined period, providing a clear and 
comprehensive depiction of desertification's spatial change character
istics (Na et al., 2019). The calculation formula is as follows: 

Xt =

∑n

i=1
(Cti × Xi)

∑n

i=1
Cti

(10) 

Table 2 
Landscape photographs and grading criteria for desertification on the MP.  

Desertification 
degree 

Landscape photos Surface features Vegetation 
cover /% 

Potential Dominated by forests 
and high-cover 
grasslands 

> 65 

Light Inhibition of vegetation 
growth and emergence 
of poisonous weeds 

50–65 

Moderate Low canopy emergence 
and sparse vegetation 
growth 

10–50 

Heavy Vegetation patchiness 
disappears and the land 
begins to be sandy and 
accompanied by the 
growth of sandy 
vegetation 

1–10 

Severe Loss of land productivity 
and regional vegetation, 
dominated by barren and 
sands. 

< 1  

Table 3 
The principles of the desertification monitoring models.  

Models Basic principles 

Albedo- 
NDVI 

The NDVI and Albedo have a strong negative linear correlation 
between different desertified lands. By dividing the feature space in 
the vertical direction of the desertification trend, different 
desertification degrees can be distinguished (Wei et al., 2018). 

MMD Max-Min Distance method is a trial-based class clustering algorithm. It 
is based on the Euclidean distance and takes the object as far away as 
possible as the clustering center, which can intelligently determine the 
number of seeds of the first-trial clustering and improve the efficiency 
of dividing the first-trial dataset (Wei et al., 2017). 

CART Classification and Regression Tree is a binary recursive model based 
on a tree structure. After dividing the original sample into two sub- 
samples, the bisection of the sub-samples continues until they cannot 
be split. It is characterized by easy understanding and high 
computational efficiency (Li et al., 2020). 

RF Random Forest is an integrated model consisting of many decision 
trees. Its function idea is to build multiple small decision trees using 
different subsample sets and feature attributes when training data is 
input into the model and then combine them into a more powerful 
model (Belgiu and Drăguţ, 2016). 

SVM Based on the structural minimization risk principle in statistical 
learning theory, support vector machines achieve data classification 
by finding an optimal hyperplane (Xu et al., 2015). 

GBDT Gradient Boosted Tree is an iterative decision tree algorithm that 
consists of multiple decision trees, and the conclusions of all the trees 
are accumulated to make the final answer. It is a boosting algorithm ( 
Xing et al., 2022).  
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Yt =

∑n

i=1
(Cti × Yi)

∑n

i=1
Cti

(11)  

where Xt and Yt are the longitude and latitude coordinates of the center 
of gravity of the tth desertification type, respectively; Cti is the area of the 
ith patch of the tth degree of desertification; and Xi and Yi are the 
longitude and latitude coordinates of the center of gravity of the ith 

patch, respectively. 

2.3.5. Geodetector 
Geodetector is a statistical model used to detect the spatial hetero

geneity of geographic phenomena and quantitatively reveal the drivers 
that affect their divergence. The model includes four components: fac
tor, risk, ecological, and interaction detector (Wang and Xu, 2017). In 
this study, we selected 12 influencing factors (PRE, TMMN, TMMX, PET, 
VPD, SM, WS, PDSI, DEM, LU, POP, and LIVEST) from natural and social 
aspects. The effects of these factors on the spatial distribution and 
evolution of desertification in the MP, as well as the interactions be
tween them, were then quantitatively identified using the factor detec
tor and the interaction detector. 

A factor detector can quantitatively detect the influence of factor X 
on the spatial differentiation of Y. In this study, X represents the 11 
influencing factors, and Y is the desertification degree. The model is 
expressed as follows: 

q = 1 −
1

Nσ2

∑L

h=1
Nhσ2

h (12)  

where q is the explanatory or determining power of the impact factor on 
desertification in the MP, ranging from 0 to 1. A higher q value signifies 
increased influence of the factor on desertification and stronger 
explanatory power, whereas a lower value indicates diminished 
explanatory power. N is the number of samples in the study area; Nh is 
the number of samples with desertification degree (h); σ2 and σ2

h are the 
variance of desertification in the study area and category h, respectively; 
and L is the number of desertification types. 

Interaction detectors can determine whether the effects of factor 
interactions on desertification have been enhanced or weakened. There 
are five scenarios for the results of the interaction: P(X1∩X2) = P(X1) + P 
(X2), for factors independent of each other; P(X1∩X2) < min(P(X1), P 
(X2)), for nonlinear weakening; min(P(X1), P(X2)) < P(X1∩X2) < max(P 
(X1), P(X2)), for single factor nonlinearity weakening; P(X1∩X2) > P(X1) 
+ P(X2), denotes nonlinear enhancement; and P(X1∩X2) > max(P(X), P 
(X2)) denotes bilinear enhancement. 

3. Results 

3.1. Potential occurrence range of desertification in the MP 

Based on the MI, the potential extent of desertification on the MP is 
illustrated in Fig. 3. The potential occurrence area of desertification 
accounted for 83.88 % of the total land area, with the semi-arid zone 

Fig. 3. Climate zoning map of the Mongolian Plateau.  
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constituting the largest portion at 44.03 %, followed by the arid zone. 
Non-desertification zones are primarily situated in the extremely arid 
and humid regions. The humid zone is mainly located in the Dax
ing'anling forest area in northeastern Inner Mongolia and in the Selenge 
River Basin in northern Mongolia. 

3.2. Accuracy validation of desertification information extraction model 

Fig. 4 illustrates the practical effects of different machine learning 
and feature space models for identifying desertification in the MP. The 
GBDT model exhibited superior performance in extracting each level of 
desertification. The revisions enhanced clarity and precision. The RF and 
SVM models performed as well as the GBDT model in recognizing light, 
moderate and heavy desertification. However, both were prone to 
misclassify potential desertified land and severe desertification as light 
and heavy desertification, respectively. The CART model is slightly 
better than the SVM model. The MMD model is ineffective in 

distinguishing between potential desertification and moderate deserti
fication, and misclassifies most of the potential desertification as light 
desertified land, but shows excellent performance in recognizing heavy 
and severe desertification. The Albedo -NDVI model is ineffective in 
distinguishing between potential, light, and moderate desertified land. 

Table 4 shows the accuracy of different machine learning and feature 
space models in recognizing each desertification. The GBDT model had 
the highest accuracy with an overall accuracy of 88.18 % and a kappa 
coefficient of 0.85. Both its user accuracy and producer accuracy for 
identifying various desertification degrees were > 80 %, indicating its 
effectiveness in identifying different levels of desertified land. The 
overall accuracy of the RF model is high at 82.73 %, but the Kappa 
coefficient is relatively low at 0.71. The producer accuracies of the SVM 
and CART model for identifying severely desertified land were 21.43 % 
and 18.57 %, respectively, which were considerably lower than those for 
identifying other desertification degree. The producer accuracy of the 
MMD model for recognizing potential desertification was only 7.14 %, 

Fig. 4. Comparison of results from different desertification information extraction models.  
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indicating that most of the potentially desertified land was misclassified 
as other types. The user accuracies of the five machine learning models 
in recognizing different desertification levels were all above 45 %. The 
Albedo-NDVI feature space model recorded the lowest overall accuracy 
of 43.64 %. Therefore, compared with other models, the GBDT model is 
most suitable for extracting refined information on desertification in the 
Mongolian Plateau. 

3.3. Spatial temporal pattern of desertification on the MP 

Based on the gradient-boosting tree model, the degree of desertifi
cation in the MP was assessed from 1990 to 2020. In the last 30 years, 
potential and moderate desertification has been mainly concentrated in 
the northern and eastern regions of the MP, including the provinces of 
Khentii, Oriental, Sukhbaatar, Central, Bulgan, and Houhangai in 
northern Mongolia, and the cities of Hulunbeier, Xing'anmeng, and 
Tongliao in Inner Mongolia, China. Heavy and severe desertification was 
mainly found in the southwestern part of the MP including the South 
Gobi, East Gobi, Central Gobi, and former Hangai provinces in central 
and southern Mongolia and the Bayannur, Alashan, Baotou, and Ulan
qab cities in northern Inner Mongolia, China. Moderate desertification 
was mainly located within the transition zone between light and heavy 
desertification. From 1990 to 2000, potential and light desertification 
retreated to the north, while moderate and severe desertification expe
rienced significant expansion in the same direction. From 2000 to 2005, 
severe desertification extended deeper into the hinterland of the MP. 
From 2005 to 2015, substantial areas of severe desertification reverted 
to heavy desertification, and moderately desertified land in the northern 
and eastern regions of the MP gradually shifted to potential or light 
desertification. While the area of potentially and lightly desertified land 
in northern Mongolia and southeastern Inner Mongolia further 
expanded from 2015 to 2020, the area of severely desertified land in 
southeastern Mongolia also expanded (Fig. 5). 

From 1990 to 2020, the areas of potential, moderate, and severe 
desertification on the MP remained stable, accounting for approximately 
19 %, 15 %, and 17 % of the total land area, respectively. The area of 
light desertification increased from 11.87 % to 16.27 %, and the area of 
severe desertification decreased from 14.64 % to 11.19 %. In 2000, the 
area of heavy desertification reached the largest in the last 30 years at 
548,000 km2, accounting for 21.90 % of the total land area of the MP. 
The area of severe desertification reached its largest extent, with nearly 
628,000 km2 in 2005, accounting for 22.91 % of the total land area. The 
areas with different degrees of desertification in Inner Mongolia, China, 
and Mongolia were counted separately. From 1990 to 2020, the pro
portion of potentially desertified land in Inner Mongolia, China to its 
total area increased by 2.68 %, light desertification increased by 3.83 %, 
heavy desertification decreased by 2.23 %, and severe desertification 
decreased by 4.8 %. Since 2005, areas of both severe and heavy 
desertification in Inner Mongolia have continued to decline. From 1990 
to 2020, the proportion of potentially desertified land in Mongolia to the 
total land area decreased by 2.60 %, light desertification increased by 
4.83 %, and severe desertification decreased by 2.43 %. However, from 
2015 to 2020, the area of severely desertified land in Mongolia increased 

by 3.08 % (Fig. S2). 
Fig. 6 illustrates the migration of the gravity centers for various 

degrees of desertification in the MP from 1990 to 2020. The gravity 
centers for potential and light desertification were closely situated, and 
their migration directions remained consistent. The movement of their 
gravity centers can be divided into two main periods: contraction, pri
marily towards the northwest and northeast from 1990 to 2010, and 
expansion towards the southwest and southeast from 2010 to 2020. 
Moderate desertification was mainly located within the transitional zone 
between heavy and light desertification, with shorter migration dis
tances during all periods. Heavy desertification occurred over a 
maximum distance of 165 km. The movement of moderate, heavy, and 
severe desertification has a certain similarity, moving primarily north
ward from 1990 to 2005 and gradually shifting southward from 2005 to 
2015. From 2015 to 2020, the center of moderate desertification 
continued to migrate southward, heavy desertification exhibited mini
mal northward movement, and severe desertification shifted westward. 

3.4. Spatiotemporal evolution of desertification on the MP 

The evolution of desertification on the MP from 1990 to 2020 was 
classified into five levels: significant deterioration (desertification in
tensifies by two or more levels), deterioration (desertification intensifies 
to the adjacent level), stabilization (desertification degree remains un
changed), recovery (desertification reduces to the adjacent level), and 
significant recovery (desertification is reduced by two or more levels). 
The dynamics of desertification on the MP from 1990 to 2020 can be 
divided into two periods: 1990–2010, marked by deterioration domi
nance, and 2010–2020, characterized by recovery dominance. Regions 
exhibiting highly active desertification conversion are concentrated in 
the Kent, Sukhbaatar, and Eastern provinces of northeastern Mongolia, 
as well as in the Xilingol League and Tongliao City in Inner Mongolia, 
China. Ongoing desertification has persisted over 30 years in the 
Omnogovi, Dornogovi, Dundgovi, and Bayankhongor provinces of 
Mongolia (Fig. 7). In the most severe period of land degradation on the 
Mongolian Plateau, from 1995 to 2000, the area experiencing deterio
ration and significant deterioration reached its peak, constituting 
approximately 18.79 % of the total land area. From 2010 to 2020, 
desertified land continued to deteriorate in the southwestern and 
southern regions of Mongolia, whereas Inner Mongolia, China achieved 
full recovery. From 2010 to 2015, the area of land recovery on the MP 
accounted for 26.8 % of the total area, which was approximately 1.5 
times the area of deterioration. In the MP, Inner Mongolia, China, and 
Mongolia, the primary mode of deterioration involved transitions from 
moderate to severe desertification, and from heavy to severe desertifi
cation. In addition, the transition from potential to moderate desertifi
cation was the main mode of significant deterioration. The main modes 
of recovery involved transitions from severe to heavy desertification, 
heavy to moderate desertification, and moderate to light desertification 
(Fig. S3). 

Table 4 
Comparison of accuracy assessment of different desertification information extraction models.  

Model Potential Light Moderate Heavy Severe OA 
(%) 

Kappa 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

PA 
(%) 

UA 
(%) 

RF  82.14  85.19  82.14  79.31  86.36  90.47  94.44  70.83  64.29  100.0  82.73  0.71 
GBDT  92.85  86.67  82.14  88.46  86.96  95.24  94.12  80.00  85.71  92.31  88.18  0.85 
SVM  67.86  95.00  92.86  68.42  68.18  88.24  94.44  53.13  21.43  100.0  72.73  0.61 
MMD  7.14  66.67  96.43  45.76  60.87  82.35  77.1  76.47  92.85  81.25  61.82  0.43 
CART  71.42  100.0  85.71  72.73  82.61  76.00  82.35  51.85  28.57  80.00  73.64  0.66 
Albedo-NDVI  3.57  100.0  10.71  13.04  100.0  36.51  40.06  88.89  92.85  92.85  43.64  0.22  
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Fig. 5. The distribution of desertification degree in the MP from 1990 to 2020.  
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3.5. Driving factors of desertification on the MP 

3.5.1. Driving factors of the spatial distribution of desertification 
A total of 12 natural and anthropogenic factors, including POP, 

LIVEST, PDSI, PET, PRE, SM, TMMN, TMMX, VPD, WS, DEM, and LU, 
were selected to analyze the mechanism of driving spatial distribution 
patterns of desertification on the MP, Inner Mongolia, China, and 
Mongolia. The results of the one-factor detector revealed that, for the 
MP, PRE and LU were the dominant drivers. From 1990 to 2020, the q- 
value for PRE increases significantly, from 0.52 to 0.68. The q-value for 
LU remains stable between 0.4 and 0.5. The q-values for SM, WS, PET, 
TMMX and TMMN played secondary roles. However, the q-values for 
SM, WS, and PET decreased significantly. Conversely, the q-values for 
the remaining factors were < 0.2, suggesting negligible effects. 
Combining the results of the interaction model on the Mongolian 
Plateau, the q-values of the factor interactions were all significantly 
higher than those of the single factors, showing a nonlinear enhance
ment and bilinear enhancement relationship, and there were significant 
differences in the interactions between the different factors. PRE ∩ (PET, 
TMMX, TMMN, and LU) had the highest explanatory power, in the form 
of bilinear enhancement. PRE, SM, WS, and LU interacted with other 
factors in a predominantly bilinear enhancement form. The nonlinear 
enhancement was prevalent among PET, PDSI, TMMX, TMMN, VPD, 
LIVEST and DEM, indicating that the factor interactions would greatly 
enhance the explanatory power of these factors for the spatial distri
bution of desertification on the MP. For example, the Palmer Drought 
Index had a q-value of 0.07 in 2010, but the minimum q-value for the 
interaction with the other factors was 0.30 (Fig. 8). 

In Inner Mongolia, China, PET and PRE were the predominant in
fluences on the spatial distribution of desertification. The PET had the 
highest q-value of 0.65. Other factors also exerted a substantial influ
ence. PRE and LU were the dominant drivers of the spatial distribution of 
desertification in Mongolia, and the q-values of PET, SM, TMMN, 
TMMX, and WS ranged from 0.32 to 0.45, significantly influencing the 
spatial distribution pattern of desertification. According to the results of 
factor interactions on the Inner Mongolia, China, and Mongolia, all 
interaction results belonged to the two categories of bilinear and 
nonlinear enhancement. In Inner Mongolia, China, the explanatory 
power of the interaction results of PRE and PET with other factors was 

generally high, further verifying the dominant influence of both on the 
spatial differentiation of desertification; The nonlinear enhancement 
was prevalent among PDSI, TMMX, TMMN, VPD, LIVEST and POP. In 
Mongolia, the explanatory power of PRE ∩ LU was the highest in all five 
years, with q-values of 0.71, 0.72, 0.75, 0.68, and 0.78, respectively. 
Meanwhile, the explanatory power of the interactions of PRE and LU 
with other factors was generally higher than the interaction results 
among other factors. Thus, it can be observed that the effects of natural 
and anthropogenic factors on the spatial distribution of desertification at 
different regional scales on the MP are not independent or simply 
stacked, but are the result of the interaction of multiple factors (Fig. S4- 
S5). 

3.5.2. Driving factors of desertification evolution 
The changing rates of these natural and anthropogenic factors were 

obtained using slope trend analysis to further reveal the driving mech
anisms of desertification evolution on the MP, Inner Mongolia, China, 
and Mongolia. In the MP, changes in LU exhibited the highest q values 
within the four phases of 2000–2020 (q = 0.5, 0.53, 0.48, and 0.54), 
establishing it as the primary driver on desertification evolution. The q- 
value of TMMN, WS, SM, and TMMX also influence desertification 
evolution, ranging from 0.2 to 0.4. Combining the results of the inter
action model on the MP, the differences in the explanatory power of the 
interactions between LU and each of the other factors over the four 
periods in 2000–2020 are small, mainly in the form of bilinear en
hancements; however, all are significantly higher than the effects of the 
interactions among the other factors. This further validates the domi
nant role of LU change in the evolution of desertification in the MP. The 
explanatory power of LIVEST and POP was low for individual factors, 
but was significantly enhanced by interactions with other climate fac
tors. For example, in 2015–2020, the q-value of single-factor monitoring 
of LIVEST was 0.14, which was significantly enhanced by interaction 
with PRE, TMMX, and TMMN, resulting in q-values of 0.47, 0.53, and 
0.48, respectively. With the exception of LU, WS and SM, the interaction 
results for the other factors predominantly exhibited as nonlinear en
hancements (Fig. 9). 

In Inner Mongolia, the explanatory power of single factors for 
desertification evolution are relatively low. In 2000–2005, the order of 
the top five factors in terms of explanatory power, from high to low, was 

Fig. 6. Migration of the gravity center of desertification in the MP from 1990 to 2020.  
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TMMN (q = 0.45) > SM (q = 0.42) > WS (q = 0.41) > LIVEST (q = 0.34) 
> PRE (q = 0.3). In 2005–2010, the order was TMMN (q = 0.34) = LU (q 
= 0.34) > TMMX (q = 0.29) > LIVEST (q = 0.28) > POP (q = 0.27). In 
2010–2015, the order was LIVEST (q = 0.38) > VPD (q = 0.35) > LU (q 
= 0.29) > WS (q = 0.27) = SM (q = 0.27). In 2015–2020, the order was 
TMMX (q = 0.43) > TMMN (q = 0.41) > LU (q = 0.35) > LIVEST (q =
0.33) > VPD (q = 0.29). A single factor does not explain well the evo
lution of desertification in Inner Mongolia, China. However, nonlinear 
enhancement and bilinear enhancement approaches are prevalent in 
factors such as TMMX, TMMN, LU, and LIVEST, indicating that the 

desertification evolution in Inner Mongolia is mainly influenced by the 
combined effects of LIVEST, TMMX, TMMN, LU, and other factors. In 
Mongolia, the q-value of LU change is the highest and significantly 
greater than that of other factors. Thus, LU emerges as the dominant 
driver of desertification evolution. Meanwhile, the explanatory power of 
the interaction between LU and each of the other factors (average q- 
value >0.70) were all significantly higher than the effects of the in
teractions among the other factors. With the exception of LU, the 
interaction results for the other factors predominantly performed as 
nonlinear enhancements (Fig. S6-S7). 

Fig. 7. Spatial distribution of desertification conversion on the Mongolian Plateau from 1990 to 2020.  
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4. Discussion 

4.1. Large-scale and high-refined desertification information extraction 
program 

As the largest arid and semi-arid region in the northern hemisphere, 
desertification is a major ecological and environmental challenge in the 
MP. For a large-scale region with complex geography, many studies tend 

to ignore the identification on the potential extent of desertification 
occurrence (Fan et al., 2020; Meng et al., 2021; Guo et al., 2022; Ren 
et al., 2024), resulting in a broad classification of desertification degree 
across the entire study area, which reduces the scientific and accuracy of 
data production and analysis. In this study, we utilized meteorological 
data to recognize the potential extent of desertification occurrence on 
the MP based on the humidity index. 

Vegetation growth status is a key indicator for remote sensing 

Fig. 8. Explanatory power of factors on the spatial distribution pattern of desertification in MP. (a)2000 (b)2005 (c)2010 (d)2015 (e)2020.  
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evaluation of desertification. However, in arid and semi-arid areas, the 
surface vegetation is sparse, the vegetation signal is weak, and the 
sensitivity of vegetation growth to precipitation is high. Therefore, 
compared with methods that use the median surface reflectance of all 
effective pixels during the growing season to synthesize the whole-area 
image (Meng et al., 2021), the NDVI maximum synthesis method 
adopted in this study can sensitively capture more effective vegetation 
information during the limited growing season, improve the accuracy of 
vegetation monitoring, and further enhance the distinction between 
sparsely vegetated areas and bare land. Vegetation indicators and soil 
indicators based on remote sensing inversion are indispensable in 
desertification monitoring. Desertification thematic characteristics, 
such as FCV, NDVI, MSAVI, Albedo, and TGSI, are commonly used to 
train machine learning models for desertification inversion. However, 
spectral information, which is a fundamental feature of remote sensing 
classification, is often overlooked in desertification identification (Fan 
et al., 2020; Feng et al., 2022; Zhao et al., 2023). Consequently, in uti
lizing thematic indicators for desertification assessment, we fully 
considered the six spectral features (green, blue, red, near-infrared, 
short-wave infrared 1, and short-wave infrared 2) of the Landsat 
image for model training. This approach identifies detailed features with 
different levels of desertification thus avoiding significant polarization 
of the recognition accuracy for different desertification degrees. 

In this study, using the GEE platform, we compared the performances 
of five machine learning methods and the Albedo-NDVI feature space 
model for large-scale and high-fine desertification information extrac
tion. Among these, the gradient-boosted tree algorithm exhibited the 
highest overall accuracy and Kappa coefficient, indicating its effective
ness in recognizing the overall desertification in the Mongolian Plateau 
and its balanced performance in recognizing each desertification level. 
The random forest model exhibited a better effect in recognizing the 
overall desertification, but its Kappa coefficient was lower than that of 

the gradient boosted tree method. The other machine learning models 
exhibited low overall accuracy and evident performance gaps in 
recognizing different desertification levels. Due to its consideration of 
the relationship between two indicators only, the single-feature space 
model has poor recognition accuracy and cannot be applied to the 
recognition of large-scale desertification information with complex 
geographic conditions. 

The MP has a complex geographic environment with obvious 
geographic heterogeneity, and a single machine learning model has high 
result uncertainty in different interior geographic units. In addition, due 
to the lack of high spatial and temporal resolution data on soil attributes, 
such as soil organic carbon, and climate data in the MP, utilizing a few 
vegetation and soil indicators obtained by inversion of remote sensing 
images can reduce, but not completely avoid, the impact of long-term 
climate fluctuations on the extraction of refined desertification infor
mation and the succession process in the region, especially in the tran
sition between arid and semi-arid areas (Wessels et al., 2004). Therefore, 
future research should focus on the combination of different geographic 
units and machine learning models, and further explore remote sensing 
inversion indicators that can reflect soil attributes and climate charac
teristics, as well as soil attributes and climate products with high spatial 
and temporal resolution. 

4.2. Differences in the evolution of desertification in Mongolia and Inner 
Mongolia, China 

China's Inner Mongolia is adjacent to Mongolia and has similar 
geographical and environmental conditions. Between 1990 and 2005, 
desertification deteriorated in both Mongolia and Inner Mongolia, 
China, which is consistent with the results of previous studies (Liu et al., 
2020; Meng et al., 2021). Post-2005, distinctions emerged in the evo
lution of desertification between Inner Mongolia, China, and Mongolia. 

Fig. 9. Explanatory power of factors on the evolution of desertification in MP. (a)2000–2005 (b)2005–2010 (c)2010–2015(d)2015–2020.  
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Between 2005 and 2010, Inner Mongolia experienced persistent land 
degradation, transitioning from potential light desertification to mod
erate desertification. From 2010 to 2020, desertified land in Inner 
Mongolia, China, entered a state of full recovery. However, desertifi
cation in Mongolia rapidly deteriorated from 2015 to 2020, following a 
slight reversal from 2005 to 2015. Overall, in the past 30 years, the 
degree of desertification in Inner Mongolia has improved, while that in 
Mongolia has increased. 

The improvement and deterioration of desertified land depends on 
climate change and the intensity of human activities. Since the 1980s, 
the annual average temperature in Mongolia has risen by approximately 
1.5 ◦C–2.5 ◦C, which is two to four times the global average rise level 
(Wang et al., 2020; Liang et al., 2021). The significant increase in 
temperature may exacerbate the drought and the frequency of heat 
waves (Hirschi et al., 2011), leading to further deterioration of deser
tified land. During the period of 1990–2020, the overall decreasing 
trend of precipitation in Mongolia is divided into two main phases: in 
1990–2005, the decreasing trend of precipitation is unfavorable for 
vegetation growth; and in 2005–2020, the increasing trend of precipi
tation promotes the growth of vegetation. Overgrazing has further 
aggravated the deterioration of desertified land in Mongolia. Since the 
early 1990s, Mongolia has been implementing a planned economy and a 
husbandry policy whereby “pastureland is owned by herders” and “ 
livestock is privately owned” (Saizen et al., 2010). To earn the right to 
use pastureland and to pursue economic benefits, the herder sector has 
competed to increase the number of livestock and raise large numbers of 
goats. From 1990 to 2020, the total number of livestock increased by 
approximately 41.75 million heads, or 1.6 times; the total number of 
goats increased by approximately 22.6 million head, or 4.41 times. The 
sharp increase in the total number of livestock and the imbalance in the 
livestock structure have exacerbated grassland degradation and land 
desertification. In response to desertification, Mongolia has also 
formulated a series of laws and regulations and ecological restoration 
projects, including the National Program on Combating Desertification 
and the National “Green Wall” Program. Although these measures are 
expected to play a key role in preventing desertification, they have had 
little effect due to limited funding and lack of continuity (Liang et al., 
2021). In contrast to climate change and human activities in Mongolia, 
there was an overall increasing trend in precipitation in Inner Mongolia, 
China, during the 1990–2020 period, which was divided into three main 
phases: an increasing trend in precipitation from 1990 to 2000, a 
decreasing trend from 2000 to 2010, and an increasing trend from 2010 
to 2020. Meanwhile, the intensity of grazing in Inner Mongolia, China, 
has increased, with livestock numbers increasing by 33.48 million head 
between 2000 and 2010, but remaining stable thereafter. However, 
differing from the nomadic grazing approach in Mongolia, Inner 
Mongolia has implemented a strict strategy of sealing and shifting of 
pastures by prohibiting grazing, resting pastures, rotating pastures, and 
foddering since the beginning of 2000. This strategy has promoted a 
fundamental change in livestock production and management modes, as 
well as a strategic adjustment of the economic structure, reducing the 
pressure on the utilization of grassland resources (Du et al., 2015). 

Variances in the evolution of desertification between China and 
Mongolia, as two politically independent entities, are primarily shaped 
by their ecological restoration policies and engineering initiatives (Chan 
et al., 2023; Guo et al., 2021; Meng et al., 2021; Zhao et al., 2023). In 
1978, China launched 16 ecological restoration projects with significant 
investments and far-reaching impacts. These projects, such as the 
“Three-North” protection forest system construction, Beijing-Tianjin 
wind and sand source management, natural forest protection, and the 
return of farmland to forests and grasslands, have substantially curtailed 
the expansion of desertification in China by enhancing ground cover and 
mitigating the spread of wind-blown sand (Bryan et al., 2018). Never
theless, the Three-North Protective Forest Program and the Sand Control 
and Sand Management Program, implemented in the 1980s, exhibited 
delayed effects. The initial restorative effects of these programs have not 

been sufficient to counterbalance the negative effects of socioeconomic 
development (Liu et al., 2020). Additionally, afforestation projects in 
arid and semi-arid areas intensify soil moisture depletion and increase 
the pressure on groundwater demand, posing challenges for the survival 
of planted trees and degradation of native grassland vegetation, thus 
adversely affecting the recovery of desertified land (Cao, 2011, 2008; 
Veldman et al., 2015). After analyzing the lessons learned from prior 
afforestation efforts, China shifted its focus to natural restoration and 
regional vegetation restructuring. It has also increased financial in
vestment in projects like the protection of natural forests (Cao et al., 
2011; Liu et al., 2020). Consequently, the effectiveness of the ecological 
restoration projects has significantly improved. 

4.3. Mechanisms driving the spatial distribution and evolution of 
desertification 

Interactions between natural and anthropogenic factors can lead to 
desertification. Precipitation has been identified as a key factor influ
encing the distribution of desertification on the MP in Inner Mongolia, 
China, and Mongolia, consistent with existing results (Fan et al., 2020; 
Guo et al., 2021; Meng et al., 2021). In arid and semiarid regions, pre
cipitation is a critical constraint affecting vegetation activity, and a lack 
of water tends to inhibit plant growth. Vegetation responds more to 
changes in precipitation than temperature, indicating that precipitation 
has a greater impact on vegetative dynamics (Herrmann et al., 2005; 
Pueyo et al., 2013; Zhu et al., 2019). As a result, the southern and 
northern parts of the MP, which receive ample precipitation, are pri
marily characterized by potential desertification and mild desertifica
tion. In contrast, the southern regions of Mongolia and the northern part 
of Inner Mongolia, China, which experience sparse precipitation, are 
predominantly characterized by heavy and severe desertification. In 
Inner Mongolia, China, potential evapotranspiration is an important 
driver of desertification. Potential evapotranspiration refers to the 
maximum rate of water evaporation under specific environmental con
ditions, including temperature, humidity, wind speed, and sufficient 
moisture. This parameter reflected the vegetative growth environment. 
Warm and dry environments are unfavorable for vegetation growth, 
making severe desertification more likely in areas with high potential 
evapotranspiration (Zhang et al., 2020). The distribution of precipita
tion in Inner Mongolia was generally consistent with the distribution of 
potential evapotranspiration. 

Contrary to the spatial distribution pattern of desertification, the 
results of this study suggest that changes in land use are the primary 
factor influencing the evolution of desertification in this region. Fig. 10 
illustrates the conversion of land use on the MP. The central part of the 
MP is a region of frequent land-use change and extremely active 
desertification conversion. Land use change can to some extent repre
sent changes in the intensity of human activities, such as overgrazing 
that turns former grassland into bare land. Reforestation, grazing pro
hibition and rest grazing policies are considered to be the primary 
drivers of land reclamation (Wang et al., 2023a; Liu et al., 2020; Zhai 
et al., 2023). However, afforestation has been associated with reduced 
soil moisture and a lowering of the water table, as well as social impacts 
such as increased water shortages for populations and livestock in some 
cases, and resource enclosures that are particularly detrimental to the 
pastoralists livelihoods (Turner et al., 2023). Thus, the environmental 
and social impacts of a range of ecological restoration policies require 
monitoring in the medium and long term. Strong wind speeds can carry 
away soil nutrients and fine particles, leading to sand formation, further 
exacerbating land degradation (Chang et al., 2021; Huang et al., 2020). 
Previous research has indicated that the greening of drylands is pri
marily influenced by weakened wind speed and increased precipitation 
in spring, which is consistent with our findings (Li et al., 2021). Soil 
moisture reflects the amount of water available to vegetation more 
directly than changes in precipitation. The proliferation of livestock and 
population, increasing temperatures, and other natural factors can 
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contribute to increased desertification to some extent (Chi et al., 2019; 
Meng et al., 2021). Consequently, factor interactions significantly 
enhanced the explanatory power of desertification evolution in various 
regions of the MP, surpassing that of a single factor. This suggests that 
the evolution of desertification was influenced by multiple factors, 
including changes in soil moisture, wind speed, and livestock. 

5. Conclusions 

In this study, the potential occurrence range of desertification on the 
Mongolian Plateau was initially determined. An indicator system and 
optimal machine learning model suitable for extracting refined desert
ification information on the MP were constructed based on the GEE 
platform. Furthermore, the distribution map of desertification degree on 
the entire MP from 1990 to 2020 was drawn using the optimal machine 
learning model. Finally, the spatial - temporal patterns and evolution of 
desertification in the MP were analyzed, and the dominant drivers of 
desertification distribution and evolution were further identified. The 
main conclusions are as follows:  

(1) The potential desertification range covered 83.88 % of the total 
land area, with non-desertification regions situated in the 
northern and southwestern parts of the MP.  

(2) The gradient boosted tree model exhibited the highest overall 
accuracy of 88.18 %, and kappa coefficient of 0.85. Both the 
user's accuracy and producer's accuracy of recognizing different 
degrees of desertification are relatively stable, making it suitable 
for fine monitoring of large-scale dryland desertification.  

(3) From 1990 to 2020, the proportion of light desertification 
increased by 4.40 %, the proportion of severe desertification 
decreased by 3.45 %, and the area of other desertification degrees 
remained stable. Heavy and severe desertification was mainly 
found in the southwestern part of the MP. The MP experienced 
predominant land degradation from 1990 to 2010, transitioning 
to land restoration from 2010 to 2020. In 2005, differences in 
desertification evolution emerged between Inner Mongolia, 
China, and Mongolia.  

(4) PRE and LU are the main drivers of the spatial distribution 
pattern of desertification in the MP and Mongolia. PET and PRE 
are the main influencing factors in Inner Mongolia. Variations in 
LU is the primary drivers of desertification on the MP in Inner 
Mongolia, China. The desertification evolution in Inner Mongolia 
is mainly affected by the interaction of LIVEST, TMMX, TMMN, 
and LU. 

This study aims to enhance our understanding of the overall 

Fig. 10. Land use conversion on the MP from 1990 to 2020.  
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desertification pattern, evolution, and driving mechanisms of the MP. It 
also explores the differences in desertification evolution and drivers 
among Inner Mongolia, China, and Mongolia. This study seeks to pro
mote the realization of the LDN goal and foster in-depth cooperation 
between China and Mongolia for desertification control. However, in 
order to improve the problem of result uncertainty in different internal 
geographic units and the impact of long-term climate fluctuations on 
desertification evolution, the combination of different geographic units 
and machine learning algorithms requires further in-depth in
vestigations, with the introduction of vegetation and soil indicators. 
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